Class WinkelTripel

All Implemented Interfaces:
Serializable, MathTransform, MathTransform2D

public class WinkelTripel extends MapProjection
Winkel Tripel and Hammer Aitoff projection

References:

  • http://en.wikipedia.org/wiki/Winkel_tripel_projection
  • http://en.wikipedia.org/wiki/Hammer_projection
Since:
2.6.3
Author:
Andrea Aime
See Also:
  • Constructor Details

  • Method Details

    • getParameterDescriptors

      public ParameterDescriptorGroup getParameterDescriptors()
      Returns the parameter descriptors for this map projection. This is used for a providing a default implementation of MapProjection.getParameterValues(), as well as arguments checking.
      Specified by:
      getParameterDescriptors in class MapProjection
      Returns:
      The parameter descriptors for this math transform, or null.
      See Also:
    • transformNormalized

      protected Point2D transformNormalized(double lam, double phi, Point2D ptDst) throws ProjectionException
      Transforms the specified (λ,φ) coordinates (units in radians) and stores the result in ptDst (linear distance on a unit sphere).
      Specified by:
      transformNormalized in class MapProjection
      Parameters:
      lam - The longitude of the coordinate, in radians.
      phi - The latitude of the coordinate, in radians.
      ptDst - the specified coordinate point that stores the result of transforming ptSrc, or null. Ordinates will be in a dimensionless unit, as a linear distance on a unit sphere or ellipse.
      Returns:
      the coordinate point after transforming (lambda, phi) and storing the result in ptDst.
      Throws:
      ProjectionException - if the point can't be transformed.
    • inverseTransformNormalized

      protected Point2D inverseTransformNormalized(double x, double y, Point2D ptDst) throws ProjectionException
      Description copied from class: MapProjection
      Transforms the specified coordinate and stores the result in ptDst. This method returns longitude as x values in the range [-PI..PI] and latitude as y values in the range [-PI/2..PI/2]. It will be checked by the caller, so this method doesn't need to performs this check.

      Input coordinates have the MapProjection.falseEasting and MapProjection.falseNorthing removed and are divided by MapProjection.globalScale before this method is invoked. After this method is invoked, the MapProjection.centralMeridian is added to the x results in ptDst. This means that projections that implement this method are performed on an ellipse (or sphere) with a semi-major axis of 1.

      In PROJ.4, the same standardization, described above, is handled by pj_inv.c. Therefore when porting projections from PROJ.4, the inverse transform equations can be used directly here with minimal change. In the equations of Snyder, MapProjection.falseEasting, MapProjection.falseNorthing and MapProjection.scaleFactor are usually not given. When implementing these equations here, you will not need to add the MapProjection.centralMeridian to the output longitude or remove the MapProjection.semiMajor (a or R).

      Specified by:
      inverseTransformNormalized in class MapProjection
      Parameters:
      x - The easting of the coordinate, linear distance on a unit sphere or ellipse.
      y - The northing of the coordinate, linear distance on a unit sphere or ellipse.
      ptDst - the specified coordinate point that stores the result of transforming ptSrc, or null. Ordinates will be in radians.
      Returns:
      the coordinate point after transforming x, y and storing the result in ptDst.
      Throws:
      ProjectionException - if the point can't be transformed.
    • hashCode

      public int hashCode()
      Returns a hash value for this projection.
      Overrides:
      hashCode in class MapProjection
    • equals

      public boolean equals(Object object)
      Compares the specified object with this map projection for equality.
      Overrides:
      equals in class MapProjection
      Parameters:
      object - The object to compare with this transform.
      Returns:
      true if the given object is a transform of the same class and if, given identical source position, the transformed position would be the equals.